Musterlösung

11. Jgst. 1. Test

Datum: 9/2007

Klasse: HBF

Fach: Mathematik

Grundlagen Funktionen; Lineare Funktionen Themen:

Zeichnen Sie folgende lineare Funktionen in ein Koordinatensystem.

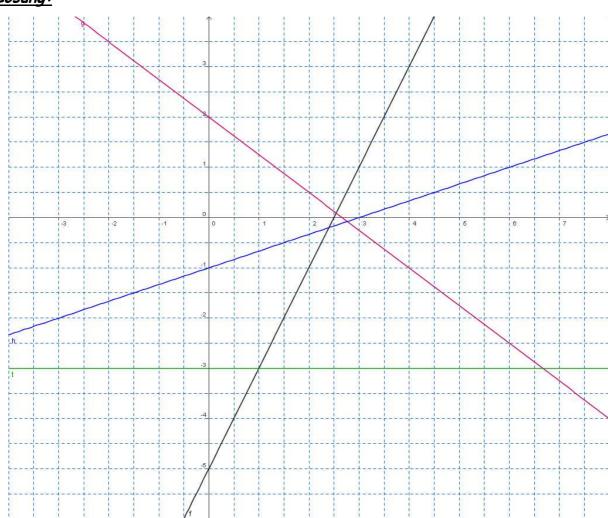
a)
$$f(x) = 2x - 5$$

a)
$$f(x) = 2x-5$$
 b) $g(x) = -\frac{3}{4}x+2$
c) $h(x) = \frac{1}{3}x-1$ d) $t(x) = -3$

$$h(x) = \frac{1}{3}x - 1$$

$$d) t(x) = -3$$

Lösung:



- Die Punkte P und Q liegen auf der Geraden $f(x) = -\frac{2}{5}x + 4$. 2.) Bestimmen Sie die fehlenden Koordinaten.
- $P(-2 \mid ?)$ b) $P(? \mid 5)$

Lösung:

$$f(-2) = -\frac{2}{5} \cdot (-2) + 4 = \frac{24}{5} = 4.8$$

$$5 = -\frac{2}{5}x + 4 \xrightarrow{-4} 1 = -\frac{2}{5}x \xrightarrow{\left(-\frac{5}{2}\right)} x = -\frac{5}{2} = -2,5$$

- Erstellen Sie die Geradengleichung, wenn folgende Angaben vorliegen: 3.)
 - m = -3 und $P(1 \mid 2)$ a)
 - b) $P(-4 \mid -1)$ und $Q(2 \mid 3)$
 - Die Gerade geht durch den Punkt $P(-1\mid 3)$ und verläuft parallel zu $f(x) = \frac{2}{3}x - \frac{1}{2}$

Lösung:

a)
$$2=-3\cdot 1+b \Rightarrow b=5 \Rightarrow f(x)=(-3)x+5$$

$$b) m = \frac{3 - (-1)}{2 - (-4)} \implies m = \frac{2}{3}$$
$$\Rightarrow 3 = \frac{2}{3} \cdot 2 + b \implies b = \frac{5}{3} \implies f(x) = \frac{2}{3}x + \frac{5}{3}$$

c)
$$3 = \frac{2}{3} \cdot (-1) + b \implies b = \frac{11}{3} \implies f(x) = \frac{2}{3}x + \frac{11}{3}$$

4.) Schnittpunktbestimmung

Berechnen Sie den Schnittpunkt zwischen den Geraden

$$f(x) = 2x+4$$
 und $g(x) = -x+3$

Lösung:

Ansatz: f(x) = g(x)

$$\Rightarrow$$
 $2x+4 = -x+3 \Rightarrow x = -\frac{1}{3} \Rightarrow g\left(-\frac{1}{3}\right) = -\left(-\frac{1}{3}\right)+3 = \frac{10}{3}$

$$\Rightarrow S\left(-\frac{1}{3} \mid \frac{10}{3}\right)$$

5.) Von einem Dreieck sind die drei Punkte gegeben:

$$A(-2 \mid -3), B(3 \mid -4)$$
 und $C(2 \mid 5)$

a) $\,\,\,\,\,\,\,\,\,$ Berechnen Sie den Mittelpunkt der Seite \overline{AB} .

Lösung:
$$x_m = \frac{-2+3}{2} = \frac{1}{2}$$
 und $y_m = \frac{-3+(-4)}{2} = -\frac{7}{2} \implies M\left(\frac{1}{2} \mid -\frac{7}{2}\right)$

b) Ermitteln Sie die Länge der Seite \overline{BC}

Lösung:
$$d = \sqrt{(3-2)^2 + [(-4)-5]^2} = \sqrt{1+81} = \sqrt{82} \approx 9,055$$

c) Welche Steigung hat die Mittelsenkrechte der Seite \overline{AC} ?

Lösung:
$$m_{\overline{AC}} = \frac{-3-5}{-2-2} = 2 \xrightarrow{m_1 \cdot m_2 = (-1)} m_{senkrecht} = -\frac{1}{2}$$

6.) Automiete

Rudi Kramer möchte sich übers Wochenende ein Auto mieten und von Landau nach München und zurück fahren.

Er hat drei Angebote:

A1: Grundgebühr: 50,00 €; km-Preis: 0,20 €

A2: Grundgebühr: 30,00 €; km-Preis: 0,30 €

A3: Auto-Flatrate: 150,00 €

a) Bilden Sie zu den Angeboten die jeweilige lineare Funktionsvorschrift.

Lösung:
$$f_{A1}(x) = 0.2x + 50$$
 $f_{A2}(x) = 0.3x + 30$ $f_{A3}(x) = 150$

b) Bei welcher Anzahl gefahrener Kilometer wären die Angebote 1 und 2 gleichwertig?

Wie hoch sind dann die Kosten für Rudi?

Lösung:

Ansatz:
$$f_{A1}(x) = f_{A2}(x) \Rightarrow 0.2x + 50 = 0.3x + 30 \Rightarrow x = 200[km]$$

Kosten:
$$f_{A1}(200) = 0.2 \cdot 200 + 50 = 90$$

c) Welches Angebot sollte er wählen und wie viel müsste er bezahlen, wenn er die Tour nach München machen möchte?

Anmerkung: Landau - München: 280 km (einfach)

Lösung:

Er sollte Angebot A3 wählen, da die Gesamtstrecke mind. 560 km beträgt.

$$f_{A1}(560) = 0.2 \cdot 560 + 50 = 162,00$$

$$f_{A3}(560) = 150[$$
€]