Klausur Wirtschaftsmathematik

Fakultät für Technik

Studiengang: Integrated Engineering Datum: 09.06.2022

Matrikelnummer:				Dozent: Jürgen Meis	el
Kurs: TIE 20 EN		Semester:	4		
Hilfsmittel: Wiss. TR (nicht programmierbar) und Formelsammlung			r) und	Bearbeitungszeit: 90 min.	
Bewertung:	Maximale Pu	ınktzahl: 90		Erreichte Punktzahl:	
Prozente:				Signum:	
Anmerkungen:	Von 7 geste tet werden.		<mark>ben müs</mark>	sen 6 ausgewählt und	bearbei-

Aufgabennummer	maximale Punkte	erreichte Punkte	Bemerkungen
A 1: Übergangsmatrizen und stat. Gleichgewicht	15		
A 2: DiffRg I (Extrema mit NB)	15		
A 3: Leontief-Modell	15		
A 4: DiffRg II (Extrema ohne NB)	15		
A 5: Lineare Optimierung	15		
A 6: Statistik I Mittelwerte & Streumaße	15		
A 7: Statistik II Gini-Koeffizient / Lorenzkurve & Preisindexberechnung / Waren- korbmethode	15		
Summe	90		

Klausur QR-Methoden (09.06.2022)

(1) Matrizen und Vektoren:

Übergangsmatrizen & Statisches Gleichgewicht

Der neue **Fitness-Tempel Schwarte** im **Schweiß-Weg 27** wirbt mit einem kostenfreien Probemonat. Dies überzeugt viele Kunden für die Kursangebote *Tabata (T), Rückengymnastik (R) und Lauftraining (L)*. Alle Kurse finden zeitlich parallel statt und man darf wöchentlich wechseln.

Die Anfangsverteilung der 100 Kursteilnehmer gestaltet sich wie folgt:

$$(T \quad R \quad L)^{trans.} = (20 \quad 50 \quad 30)^{trans.}$$

Das prozentuale Wechselverhalten nach einer Woche sieht wie folgt aus:

$$\begin{pmatrix}
\frac{e^{2}}{T} & T & R & L \\
T & 0.1 & b & 2c \\
R & 0.4 & 0.6 & c \\
L & a & 3b & 0.7
\end{pmatrix}$$

- a) Berechnen Sie die **Verteilungen in der 2. und 3. Woche**, wenn man davon ausgehen kann, dass die Zahlen aus der Wechsel-Matrix auch für nächsten Wochen so bleiben.
- b) Ermitteln Sie die sogenannte stationäre Verteilung (statisches GG) für die 100 Kursteilnehmer.

Lösung:

$$\begin{pmatrix} \mathcal{E}^{\mathsf{T}} & T & R & L \\ T & 0.1 & 0.1 & 0.2 \\ R & 0.4 & 0.6 & 0.1 \\ L & 0.5 & 0.3 & 0.7 \end{pmatrix} \xrightarrow{\text{Woche 2}} \begin{pmatrix} 0.1 & 0.1 & 0.2 \\ 0.4 & 0.6 & 0.1 \\ 0.5 & 0.3 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 20 \\ 50 \\ 30 \end{pmatrix} = \begin{pmatrix} 13 \\ 41 \\ 46 \end{pmatrix} \xrightarrow{\text{Woche 3}} \begin{pmatrix} 0.1 & 0.1 & 0.2 \\ 0.4 & 0.6 & 0.1 \\ 0.5 & 0.3 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 13 \\ 41 \\ 46 \end{pmatrix} = \begin{pmatrix} 14.6 \\ 34.4 \\ 51 \end{pmatrix}$$

Statisches Gleichgewicht:

$$(U-E) \stackrel{\rightarrow}{\vec{x}} = \stackrel{\rightarrow}{0} \rightarrow \begin{pmatrix} -0.9 & 0.1 & 0.2 \\ 0.4 & -0.4 & 0.1 \\ 0.5 & 0.3 & -0.3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \stackrel{\rightarrow}{\vec{x}} = \frac{1}{32} \begin{pmatrix} 9z \\ 17z \\ 32z \end{pmatrix}$$

$$\rightarrow x + y + z = 1 \rightarrow \frac{1}{32} (9z + 17z + 32z) = 1 \rightarrow \frac{58}{32} z = 1$$

$$\rightarrow z = \frac{32}{58} \rightarrow y = \frac{17}{58} \rightarrow x = \frac{9}{58}$$

In der 5. Woche wird ein neues Angebot aufgelegt und der Kurs (R)ückengymnastik durch (B)ierYoga ersetzt 😉

Hier ergibt sich eine stationäre Verteilung von $\begin{pmatrix} T & B & L \end{pmatrix}^{trans.} = \begin{pmatrix} 0.3 & 0.6 & 0.1 \end{pmatrix}^{trans.}$

Die zugehörige Übergangs-/Wechselmatrix hat nun die Form $\begin{pmatrix} \frac{G^*}{T} & T & B & L \\ T & x_{11} & x_{12} & 0,3 \\ B & x_{21} & x_{22} & x_{23} \\ L & 0,1 & 0,1 & x_{33} \end{pmatrix}$

c) Bestimmen Sie die Koeffizienten der Matrix unter der Annahme, dass der Anteil der Teilnehmer, die dem (B)ierYoga treu bleiben, 70 % beträgt.

Lösung:

$$\begin{pmatrix}
\frac{e^{x}}{T} & T & B & L \\
T & x_{11} & 0.2 & 0.3 \\
B & x_{21} & 0.7 & x_{23} \\
L & 0.1 & 0.1 & x_{33}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
x_{11} & 0.2 & 0.3 \\
x_{21} & 0.7 & x_{23} \\
0.1 & 0.1 & x_{33}
\end{pmatrix}
\cdot
\begin{pmatrix}
0.3 \\
0.6 \\
0.1
\end{pmatrix}
=
\begin{pmatrix}
0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
x_{11} & 0.2 & 0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.5 \\
0.2 \\
0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.5 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.5 \\
0.7 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.1 \\
0.1 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.1 \\
0.1 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.1 \\
0.1 \\
0.1 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.1 \\
0.1 \\
0.1 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.1
\end{pmatrix}
-
\begin{pmatrix}
0.3 \\
0.4 \\
0.7 \\
0.6 \\
0.$$

(2) Differentialrechnung I: Extrema mit Nebenbedingung

Bei einer Ein-Produktunternehmung liegt folgende Produktionsfunktion vor: $f(x,y) = 30 \cdot x^{\frac{1}{3}} \cdot y^{\frac{2}{3}}$ wobei x und y die ME der beiden eingesetzten Produktionsfaktoren q_1 und q_2 darstellen. Die Faktorpreise für jeweils eine ME der beiden Produktionsfaktoren betragen $q_1 = 3$ GE und $q_2 = 8$ GE.

Das Unternehmen möchte einen Auftrag im Umfang f(x, y) von 150 ME erfüllen und dabei die Kosten minimieren.

- a) Lösen Sie das Problem mittels Lagrangemethode und bestimmen Sie die Kosten im Minimalfall.
- b) Welchen Wert besitzt der Lagrangeparameter im Minimalfall und welche ökonomische Aussage kann hier getroffen werden.
- c) Auf welchen Wert ändert sich das Produktionsvolumen im Optimalfall, wenn die **Kosten auf 70 GE erhöht** würden?

Anmerkung: Auf einen Nachweis des Minimums kann hier verzichtet werden! Lösung:

$$L(x, y, \lambda) = 3x + 8y + \lambda \left(150 - 30 \cdot x^{\frac{1}{3}} \cdot y^{\frac{2}{3}}\right)$$

$$L_{x}(x, y, \lambda) = 3 - 10\lambda \cdot \left(\frac{y}{x}\right)^{\frac{2}{3}} = 0 \quad \Rightarrow \quad \lambda = \frac{3}{10} \cdot \left(\frac{x}{y}\right)^{\frac{2}{3}}$$

$$L_{y}(x, y, \lambda) = 8 - 20\lambda \cdot \left(\frac{x}{y}\right)^{\frac{1}{3}} = 0 \quad \Rightarrow \quad \lambda = \frac{2}{5} \cdot \left(\frac{y}{x}\right)^{\frac{1}{3}}$$

$$\Rightarrow \quad Austauschverhältnis: \quad y = \frac{3}{4} \cdot x \quad \xrightarrow{\frac{y = \frac{3}{4} \cdot x \text{ in } NB}{4}} \quad 150 = 30 \cdot x^{\frac{1}{3}} \cdot \left(\frac{3}{4} \cdot x\right)^{\frac{2}{3}} = 24,76x$$

$$\Rightarrow \quad x = 6,06 \quad und \quad y = 4,54 \quad und \quad K\left(6,06/4,54\right) = 3 \cdot 6,06 + 8 \cdot 4,54 = 54,5 \left[GE\right]$$

Lagrangeparameter:
$$\rightarrow \lambda = \frac{3}{10} \cdot \left(\frac{x}{y}\right)^{\frac{2}{3}} = \frac{3}{10} \cdot \left(\frac{x}{\frac{3}{4} \cdot x}\right)^{\frac{2}{3}} = \frac{3}{10} \cdot \left(\frac{4}{3}\right)^{\frac{2}{3}} = 0,363424$$

Jede ME, die mehr produziert wird, verursacht 0,3634 [GE] an Kosten.

$$70-54,5=15,5 \rightarrow \frac{15,5}{0,363424} = 42,65$$
 [ME] \rightarrow 42,65 ME können mehr produziert werden.

(3) Leontief-Modell

Die Verflechtung dreier Sektoren A, B und C einer Volkswirtschaft entspricht dem Leontief-Modell. Die technologische Matrix T gestaltet sich wie folgt:

$$T = \begin{pmatrix} \frac{A}{A} & A & B & C \\ \hline A & 0.5 & 0 & 0.2 \\ B & 0.2 & 0.1 & 0.3 \\ C & 0.4 & 0.2 & 0.2 \end{pmatrix}$$

- a) In der vergangenen Produktionsperiode stellte Sektor A insgesamt 400 Mengeneinheiten (ME) her, Sektor B 600 ME und Sektor C 500 ME.
 Geben Sie in einer Input-Output-Tabelle an, wie viele ME die Sektoren untereinander aus-
- b) In der laufenden Produktionsperiode rechnet man mit folgender Nachfrage von Seiten des Marktes: $\vec{y} = \begin{pmatrix} 125 & 300 & 150 \end{pmatrix}^T$ Bestimmen Sie die entsprechende Gesamtproduktionsmengen in den einzelnen Sektoren.
- c) Der Produktionsvektor $\overrightarrow{x_k} = \left(200k \quad 100 \quad \frac{100}{k}\right)^T$ hängt vom Parameter k>0 ab.

tauschten und an den Konsum (Markt) abgaben.

Für welche Werte von k ist die Marktabgabe von B größer als die Marktabgabe von Sektor A? Lösung:

$$T = \begin{pmatrix} \overrightarrow{A} & A & B & C \\ A & 0.5 & 0 & 0.2 \\ B & 0.2 & 0.1 & 0.3 \\ C & 0.4 & 0.2 & 0.2 \end{pmatrix} \rightarrow \begin{pmatrix} \overrightarrow{A} & B & C & Markt & Gesamt \\ A & \frac{x_{11}}{400} = 0.5 & 0 & \frac{x_{13}}{500} = 0.2 & 400 \\ B & \frac{x_{21}}{400} = 0.2 & \frac{x_{22}}{600} = 0.1 & \frac{x_{23}}{500} = 0.3 \\ C & \frac{x_{31}}{400} = 0.4 & \frac{x_{32}}{600} = 0.2 & \frac{x_{33}}{500} = 0.2 \end{pmatrix}$$

$$500$$

$$\Rightarrow \begin{pmatrix} \overrightarrow{A} & A & B & C & Markt & Gesamt \\ A & x_{11} = 200 & 0 & x_{13} = 100 & 100 & 400 \\ B & x_{21} = 80 & x_{22} = 60 & x_{23} = 150 & 310 & 600 \\ C & x_{31} = 160 & x_{32} = 120 & x_{33} = 100 & 120 & 500 \end{pmatrix}$$

Ansatz 1:
$$T \cdot \vec{x} + \vec{y} = \vec{x} \rightarrow \vec{y} = \vec{x} - T \cdot \vec{x} \rightarrow \vec{y} = (E - T) \cdot \vec{x}$$
 [Lösung per LGS]

$$\vec{y} = (E - T) \cdot \vec{x} \rightarrow \begin{pmatrix} 125 \\ 300 \\ 150 \end{pmatrix} = \begin{pmatrix} 0.5 & 0 & -0.2 \\ -0.2 & 0.9 & -0.3 \\ -0.4 & -0.2 & 0.8 \end{pmatrix} \cdot \vec{x} \rightarrow \vec{x} = \begin{pmatrix} 486 \\ 638 \\ 590 \end{pmatrix}$$

Ansatz 2: $\vec{x} = (E - T)^{-1} \cdot \vec{y}$ [Lösung per Leontief-Inverse]

$$\vec{x} = (E-T)^{-1} \cdot \vec{y} \rightarrow \vec{x} = \begin{pmatrix} 0.5 & 0 & -0.2 \\ -0.2 & 0.9 & -0.3 \\ -0.4 & -0.2 & 0.8 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 125 \\ 300 \\ 150 \end{pmatrix} \rightarrow \vec{x} = \begin{pmatrix} 486 \\ 638 \\ 590 \end{pmatrix}$$

Leontief – Inverse:
$$(E-T)^{-1} = \begin{pmatrix} 2,64 & 0,16 & 0,72 \\ 1,12 & 1,28 & 0,76 \\ 1,6 & 0,4 & 1,8 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} 66 & 4 & 18 \\ 28 & 32 & 19 \\ 40 & 10 & 45 \end{pmatrix}$$

$$\overrightarrow{x_k} = \left(200k \quad 100 \quad \frac{100}{k}\right)^T$$

Ansatz: $T \cdot \vec{x} + \vec{y} = \vec{x} \rightarrow \vec{y} = \vec{x} - T \cdot \vec{x} \rightarrow \vec{y} = (E - T) \cdot \vec{x}$

$$\vec{y} = (E - T) \cdot \vec{x} \rightarrow \vec{y}_{neu} = \begin{pmatrix} 0.5 & 0 & -0.2 \\ -0.2 & 0.9 & -0.3 \\ -0.4 & -0.2 & 0.8 \end{pmatrix} \cdot \begin{pmatrix} 200k \\ 100 \\ \frac{100}{k} \end{pmatrix} \rightarrow \vec{y}_{neu} = \begin{pmatrix} 100k - \frac{20}{k} \\ 90 - 40k - \frac{30}{k} \\ \frac{80}{k} - 80k - 20 \end{pmatrix}$$

$$Bedingung: \quad y_{B} > y_{A} \quad \rightarrow \quad 90 - 40k - \frac{30}{k} > 100k - \frac{20}{k} \quad \rightarrow \quad 90 - 140k - \frac{10}{k} > 0 \quad \rightarrow \quad -140k^{2} + 90k - 10 > 0 \\ \rightarrow \quad k = \frac{-90 \pm \sqrt{8100 - 5600}}{-280} = \frac{-90 \pm \sqrt{2500}}{-280} = \frac{-90 \pm 50}{-280} \quad \rightarrow \quad k_{1} = \frac{1}{7} \quad und \quad k_{2} = \frac{1}{2} \quad \rightarrow \quad k \in \left[\frac{1}{7}; \frac{1}{2} \right]$$

(4) Differentialrechnung II: Extrema ohne Nebenbedingungen

Gegeben ist folgende Funktion:

$$f(x, y, z) = 10 + 3x - 162y - \frac{1}{4}x^2 - y^2 - \frac{1}{6}z^2 + 4xy + 6yz$$

Ermitteln Sie stationäre Stelle und prüfen Sie, ob diese ein Extremum darstellt.

Lösung

$$f_{x}(x,y,z) = 3 - \frac{1}{2}x + 4y = 0 \rightarrow x = 6 + 8y \xrightarrow{y = 1} x = 14$$

$$f_{y}(x,y,z) = -162 - 2y + 4x + 6z = 0 \xrightarrow{einsetzen} -162 - 2y + 4(6 + 8y) + 6 \cdot 18y = 0$$

$$\rightarrow -162 - 2y + 24 + 32y + 108y = 0 \rightarrow 138y = 138 \rightarrow y = 1$$

$$f_{z}(x,y,z) = -\frac{1}{3}z + 6y = 0 \rightarrow z = 18y \xrightarrow{y = 1} z = 18$$

$$\Rightarrow S(14 | 1 | 18 | f)$$

$$\Rightarrow S(14 | 1 | 18 | f)$$

$$Det(H_{1}) = -\frac{1}{2} < 0$$

$$\Rightarrow Det(H_{2}) = -15 > 0$$

$$\Rightarrow C(H_{3}) : nicht notwendig$$

$$\Rightarrow C(H_{3}) : nicht notwendig$$

(5) Lineare Optimierung und Simplexalgorithmus

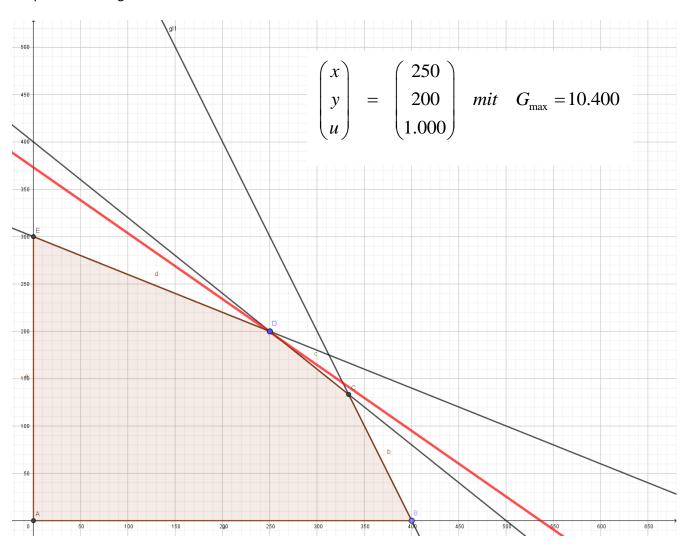
In einer sehr kleinen Schuhfabrik werden Damen- und Herrenschuhe hergestellt und zwar jeweils nur ein Modell. Die Produktionsbedingungen ergeben sich aus folgender Tabelle:

		Damenschuh	Herrenschuh	verfügbar
Herstellungszeit	[h]	20	10	8000
Maschinenbearbeitung	[h]	4	5	2000
Lederbedarf	$[dm^2]$	6	15	4500
Reingewinn	[Euro]	16	32	

Wie viele Mengeneinheiten eines jeden Schuhmodells müssen unter Einhaltung der Restriktionen hergestellt und verkauft werden, um den Gewinn zu maximieren? Lösen Sie das Problem graphisch und per Simplexalgorithmus.

	х	У	u ₁	u ₂	u ₃	b	Umformung
ı	20	10	1	0	0	8.000	$\frac{8000}{10} = 800$
II	4	5	0	1	0	2.000	$\frac{2000}{5} = 400$
Ш	6	<mark>15</mark>	0	0	1	4.500	$\frac{4500}{15} = 300 \rightarrow \frac{1}{15} \cdot III$
Z	16	32	0	0	0	G	
ı	20	10	1	0	0	8.000	I – 10*III
II	4	5	0	1	0	2.000	II – 5*III
Ш	$\frac{2}{5}$	1	0	0	$\frac{1}{15}$	300	
Z	16	32	0	0	0	G	ZF – 32*III
ı	16	0	1	0	$-\frac{2}{3}$	5.000	$\frac{5000}{16} = 312,5$
П	2	0	0	1	$-\frac{1}{3}$	500	$\frac{500}{2} = 250 \to \frac{1}{2} \cdot II$
Ш	$\frac{2}{5}$	1	0	0	$\frac{1}{15}$	300	$\frac{300}{2} \cdot 5 = 750$
z	$\frac{16}{5}$	0	0	0	$-\frac{32}{15}$	G-9.600	
ı	16	0	1	0	$-\frac{2}{3}$	5.000	I – 16*II
II	1	0	0	$\frac{1}{2}$	$-\frac{1}{6}$	250	
Ш	$\frac{2}{5}$	1	0	0	$\frac{1}{15}$	300	$III - \frac{2}{5} \cdot II$
z	$\frac{16}{5}$	0	0	0	$-\frac{32}{15}$	G-9.600	$ZF - \frac{16}{5} \cdot II$
ı	0	0	1	- 8	2	1.000	
II	1	0	0	$\frac{1}{2}$	$-\frac{1}{6}$	<mark>250</mark>	
Ш	0	1	0	$-\frac{1}{5}$	$\frac{2}{15}$	<mark>200</mark>	
Z	0	0	0	-1,6	-1,6	G-10.400	

Graphische Lösung:



(6) Deskriptive Statistik I:

Häufigkeitsverteilung / Mittelwerte / Streumaße / Korrelation / Regression

In der Personalabteilung der Firma "Rasch und Ruh – Morgens geschlossen, mittags zu" ist zum 31.03.2022 die Altersstruktur der Mitarbeiter zu ermitteln gewesen.

Folgende Abfrageergebnisse (Alter in Jahren) liegen in einem **Stengel-Blatt-Diagramm** vor:

Altersstruktur Frauen:

Zehner	Einer	Anzahl
1	7/7/8/	3
2	0/0/1/2/3/4/4/4/5/ 5/5/6/9/	13
3	0/1/1/2/5/5/5/6/9/	9
4	0/0/0/0/0/0/1/1/3/ 3/3/3/3/4/5/6	16
5	4/4/5/5/9/	5
6	0/0/1/1/	4
	Summe	50

Altersstruktur Männer:

Zehner	Einer	Anzahl
1	7/8/	2
2	0/2/3/5/7/	5
3	5/5/6/7/	4
4	0/0/0/1/2/2/3/5/	8
5	0/0/1/5/5/6/9/	7
6	1/2/4/5/	4
	Summe	30

Häufigkeitstabelle der Mitarbeiter (nach Altersstufen):

Alter [Jahre]	absolute Häufigkeit	relative Häufigkeit	Klassen- mitte	Klassen- breite	Häufigkeits- dichte	kum. rel. Häufigkeit
[16 ; 20[5	0,0625	18	4	1,25	0,0625
[20;30[18	0,225	25	10	1,8	0,2875
[30 ; 40[13	0,1625	35	10	1,3	0,45
[40;50[24	0,3	45	10	2,4	0,75
[50 ; 60[12	0,15	55	10	1,2	0,9
[60;66]	8	0,1	63	6	1,33	1
Summe	80	1		50		

- a) Vervollständigen Sie die Tabelle.
- b) Erklären Sie kurz, was unter einem Stengel-Blatt-Diagramm versteht bzw. erläutern Sie die Darstellungsform.
- c) Bestimmen Sie den arithmetischen Mittelwert, die modale Klasse und den Modalwert.
- d) Bestimmen Sie den Median, das untere Quartil und das obere Quartil.
- e) Zeichnen Sie den zugehörigen Boxplot.
 Welche signifikanten Kennzeichen bzw. Rückschlüsse lässt der Boxplot zu?

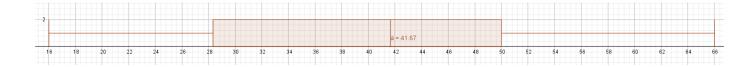
Lösung:

$$\bar{x} = 18 \cdot \frac{5}{80} + 25 \cdot \frac{18}{80} + 35 \cdot \frac{13}{80} + 45 \cdot \frac{24}{80} + 55 \cdot \frac{12}{80} + 63 \cdot \frac{8}{80} = 40,4875 \approx 40,5 [Jahre]$$

Modale Klasse: [40;50] wegen $HD_{\text{max}} = 2,4 \rightarrow Modalwert: <math>\overline{x_{Mod}} = 45$

$$\overline{x_{Median}} = 40 + \frac{10(0,5-0,45)}{0,3} = 41,67 \qquad \overline{x_{quartile1}} = 20 + \frac{10(0,25-0,0625)}{0,225} = 28,33$$

$$\overline{x_{quartile 3}} = 40 + \frac{10(0,75-0,45)}{0,3} = 50$$



- ⇒ 50 % der MA sind zwischen 28 und 50 Jahren alt
- ⇒ Weitgehend ausgewogene Altersstrukturen
- ⇒ Kleinere Häufung im Bereich zwischen Median und Quartil 3

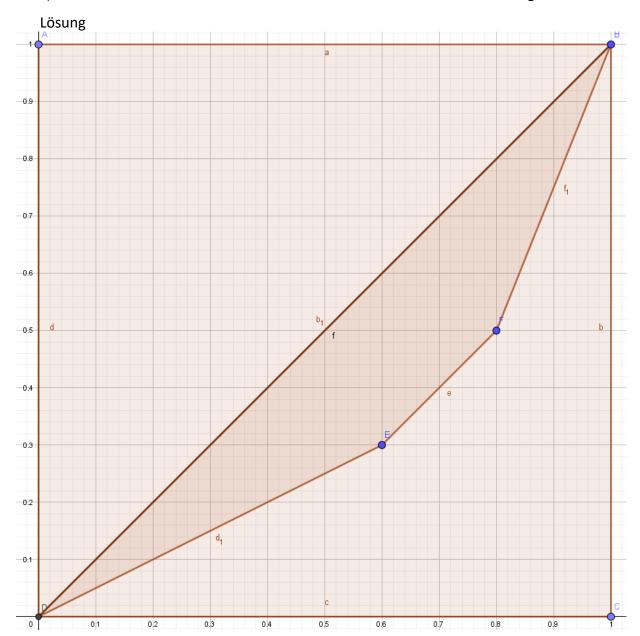
(7) Deskriptive Statistik II:

Gini-Koeffizient & Lorenzkurve und Warenkorbmethode und Preisindexberechnung

Teil I: Gini-Koeffizient & Lorenzkurve

Ein Markt wird von fünf Unternehmen beliefert. 3 Unternehmen besitzen jeweils 10 % Lieferanteil, der vierte Lieferant hat einen Anteil von 20 %, der fünfte vervollständigt das Kontingent.

- a) Zeichnen Sie die dazugehörige Lorenzkurve.
- b) Berechnen Sie den Gini-Koeffizienten und den normierten Gini-Koeffizienten.
- c) Warum ist die Differenz zwischen den beiden Gini-Koeffizienten relativ groß?



Fläche unterhalb der Lorenzkurve [FuL]: FuL = 0,09+0,08+0,15 = 0,32

⇒ Konzentrationsfläche [KF]: KF = 0,18

 \Rightarrow Gini-Koeffizient [GK]: GK = KF/0,5 = 0,36

 \Rightarrow Normierter Gini-Koeffizient: $GK_{(norm.)} = KF * 2n/(n-1) = 0.18 * 10/4 = 0.45$

⇒ Problem des großen Unterschieds: geringe Grundmenge n = 5

Teil II: Warenkorbmethode und Preisindexberechnung

Ein Unternehmen hat eine Preis-Mengen-Übersicht für die bezogenen Güter A, B und C angefertigt.

Cut	Pr	eise	Mer	ngen
Gut	2015	2021	2015	2021
Α	10	15	60	50
В	25	20	40	70
С	30	40	80	60

- a) Ermitteln Sie hierzu die Preisindices nach Laspeyres und Paasche.
- b) Berechnen Sie den Preisindex nach Fisher.
- c) Wie hoch ist die jährliche Inflationsrate auf der Grundlage der Daten nach Laspeyres?

Lösung:

Laspeyres:
$$L_p = \frac{\sum_{p_{21i}} \cdot q_{15i}}{\sum_{p_{15i}} \cdot q_{15i}}$$

Ausgaben des Berichtsjahres mit Mengen des Basisjahres (Menge Periode I * Preis Periode II)

Ausgaben/Umsatz des Basisjahres (Menge Periode I * Preis Periode I)

$$L_P = \frac{15 \cdot 60 + 20 \cdot 40 + 40 \cdot 80}{10 \cdot 60 + 25 \cdot 40 + 30 \cdot 80} = \frac{4900}{4000} = 1,225$$

Paasche:
$$P_P = \frac{\sum p_{21i} \cdot q_{21i}}{\sum p_{15i} \cdot q_{21i}}$$

Ausgaben/Umsatz des Berichtsjahres (Menge Periode II * Preis Periode II)

Ausgaben des Basisjahres mit Mengen des Berichtsjahres (Menge Periode II * Preis Periode I)

$$P_P = \frac{15 \cdot 50 + 20 \cdot 70 + 40 \cdot 60}{10 \cdot 50 + 25 \cdot 70 + 30 \cdot 60} = \frac{4550}{4050} = 1,1234$$

$$F_p = \sqrt{L_p \cdot P_p} \longrightarrow \sqrt{1,225 \cdot 1,1234} = 1,1731$$

Inflationsrate: $\sqrt[6]{1,225} = 1,034402 \rightarrow i_{eff} = 1,034402 -1 = 0,034402 \xrightarrow{\cdot 100} 3,4402\%$

d) Für einen aus 400 Gütern bestehenden Warenkorb wurden für die Jahre 2018, 2019 und 2020 folgende Umsatzsummen berechnet:

$$\sum_{i=1}^{400} q_{18;i} p_{18;i} = 870 \qquad \sum_{i=1}^{400} q_{18;i} p_{19;i} = 877 \qquad \sum_{i=1}^{400} q_{18;i} p_{20;i} = 898$$

$$\sum_{i=1}^{400} q_{19;i} p_{18;i} = 873 \qquad \sum_{i=1}^{400} q_{19;i} p_{19;i} = 879 \qquad \sum_{i=1}^{400} q_{19;i} p_{20;i} = 902$$

$$\sum_{i=1}^{400} q_{19;i} p_{19;i} = 879 \qquad \sum_{i=1}^{400} q_{19;i} p_{20;i} = 902$$

$$\sum_{i=1}^{400} q_{20;i} p_{18;i} = 878 \qquad \qquad \sum_{i=1}^{400} q_{20;i} p_{19;i} = 895 \qquad \qquad \sum_{i=1}^{400} q_{20;i} p_{20;i} = 905$$

Berechnen Sie hieraus die Preisindices nach Laspeyres und Paasche für 2020 zum Basisjahr 2018.

Lösung

Laspeyres:
$$L_p = \frac{\sum_{p_{20i}} \cdot q_{18i}}{\sum_{p_{18i}} \cdot q_{18i}} = \frac{898}{870} = 1,032184$$

Ausgaben des Berichtsjahres mit Mengen des Basisjahres (Menge Periode I * Preis Periode II)

Ausgaben/Umsatz des Basisjahres (Menge Periode I * Preis Periode I)

Paasche:
$$P_P = \frac{\sum_{p_{20i}} \cdot q_{20i}}{\sum_{p_{18i}} \cdot q_{20i}} = \frac{905}{878} = 1,030752$$

Ausgaben/Umsatz des Berichtsjahres (Menge Periode II * Preis Periode II)

Ausgaben des Basisjahres mit Mengen des Berichtsjahres (Menge Periode II * Preis Periode I)